# Preparation and Mössbauer Effect of Tin Intercalates of Layered Transition Metal Dichalcogenides

P. S. GENTILE\*, D. A. DRISCOLL

Department of Chemistry, Fordham University, Bronx, N.Y. 10458, U.S.A.

and A. J. HOCKMAN<sup>†</sup>

Department of Chemistry, Herbert H. Lehman College, City University of New York, Bronx, N.Y., U.S.A.

Received December 21, 1978

Mössbauer data has been obtained on six new, distinct tin intercalates which in addition to three others already reported in the literature comprise three distinct groups of compounds.

The compounds contain tin in a single site in the +2 formal oxidation state. A singlet Mössbauer peak was found for all of the compounds except the 2S-, totally-filled intercalates, which show quadrupole splitting. The criteria for classification of these compounds are discussed.



Fig. 1. 110 section of SnTaS<sub>2</sub> (A) and 2H-TaS<sub>2</sub> (B).

## Introduction

The dichalcogenides of tantalum and niobium have been investigated extensively [1]. These compounds can be visualized as a sandwich three atomic layers thick, MX<sub>2</sub>, with the chalcogens of each layer only

<sup>&</sup>lt;sup>†</sup>Present address: Department of Chemistry and Chemical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030.

| TA | BLE | I. I | reparation | n and | Lattice | Constants i | for Tin | Intercalates. |
|----|-----|------|------------|-------|---------|-------------|---------|---------------|
|----|-----|------|------------|-------|---------|-------------|---------|---------------|

weakly held to the next layer by van der Waals forces. Because of the weak interlayer bonding, these materials can accept other species between layers forming intercalation complexes [2, 3]. The unit cell in the intercalation compounds usually includes two slabs of  $MX_2$  as in 2H-TaS<sub>2</sub> itself, with the intercalated atoms occupying either tetrahedral, octahedral or trigonal prismatic holes.

The unusual magnetic and superconductive properties of these materials has prompted a considerable amount of work centered around bonding properties.

| Compound                                           | Mol Sn/MX <sub>2</sub> | <b>Reaction Conditions</b> | Lattice Constants (A) |       |  |
|----------------------------------------------------|------------------------|----------------------------|-----------------------|-------|--|
|                                                    | starting mix           | days/°C                    | a                     | с     |  |
| 2S-SnTaS2 <sup>a</sup>                             | -                      | -/850                      | 3.28                  | 17.40 |  |
| 2S-SnNbS <sub>2</sub> <sup>b</sup>                 | 0.66                   | 18/700                     | 3.32                  | 17.36 |  |
| 2S-SnTaSe <sub>2</sub>                             | >1.0                   | 6/480                      | 3.42                  | 18.38 |  |
| 2S-SnNbSe <sub>2</sub>                             | 1.0                    | 19/550                     | 3.46                  | 18.16 |  |
| 1S-SnNbSe <sub>2</sub>                             | 0.5                    | 14/950                     | 3.42                  | 9.30  |  |
| 2S-Sn <sub>1/2</sub> NbSe <sub>2</sub>             | 1.4                    | 12/520                     | 3.46                  | 14.89 |  |
| 3S-Sn <sub>1/3</sub> NbS <sub>2</sub>              | 1.5                    | 11/520                     | 3.34                  | 20.40 |  |
| 2S-Sn <sub>1/3</sub> TaS <sub>2</sub> <sup>a</sup> | 0.33                   | <b>/90</b> 0               | 3.29√3                | 14.35 |  |
| 2S-Sn <sub>1/6</sub> TaS <sub>2</sub>              | 0.50                   | 10/550                     | 3.30√3 13.44          |       |  |

<sup>a</sup>See reference [3]. <sup>b</sup>See reference [10].

<sup>\*</sup>To whom correspondence should be addressed.

TABLE II. Observed X-ray Patterns for the Tin Intercalated Compounds.

| d(obs)                | hkl   | Intensity      | d(obs)   | hkl   | Intensity          | d(obs)        | hkl               | Intensity      |
|-----------------------|-------|----------------|----------|-------|--------------------|---------------|-------------------|----------------|
| 2S-SnTaS <sub>2</sub> |       |                | 1.289    | 206   | w                  | 1S-SnNbS      | e2                |                |
| 8 689                 | 002   | e              | 1.206    | 10.13 | w <sup>-</sup>     | 0 300         | 001               | m <sup></sup>  |
| 4.353                 | 002   | 6<br>6         | 1.139    | 10.14 | w <sup>-</sup>     | 4 646         | 001               | w              |
| 2 903                 | 004   | 3              | 1.091    | 11.12 | w                  | 3 100         | 002               | w              |
| 2.505                 | 100   | w<br>m         | 1.086    | 210   | w                  | 2.064         | 100               | **<br>**       |
| 2.807                 | 100   | m              | 1.083    | 00.16 | w                  | 2.904         | 100               |                |
| 2.031                 | 101   | m <sup>+</sup> | 1.017    | 216   | w                  | 2.027         | 101               | 5              |
| 2.710                 | 102   | m              |          |       |                    | 2.301         | 102               |                |
| 2.371                 | 105   | ····+          | 2S-SnTaS | e2    |                    | 2.521         | 102               | \$             |
| 2.217                 | 105   | *              | 9.213    | 002   | \$                 | 2.131         | 105               | <u> </u>       |
| 2.101                 | 106   | 3              | 4 634    | 004   |                    | 1.039         | 104               | 111            |
| 2.040                 | 100   | w<br>+         | 4.034    | 100   | s<br>+             | 1.034         | 104               | w              |
| 1.001                 | 107   | w              | 2.939    | 100   | m                  | 1.715         | 105               | s<br>+         |
| 1./40                 | 110   | w              | 2.921    | 101   | s                  | 1.575         | 105               |                |
| 1.030                 | 110   | m              | 2.014    | 102   | m                  | 1.349         | 201               |                |
| 1.023                 | 112   | W              | 2.079    | 103   | w                  | 1.405         | 201               | w              |
| 1.003                 | 109   | w<br>t         | 2.401    | 104   | m                  | 1.375         | 114               | w              |
| 1.548                 | 114   | w'             | 2.295    | 008   | S                  | (1.375        | 114               |                |
| 1.491                 | 10.10 | w              | 2.295    | 105   | w                  | 1.337         | 203               | m              |
| 1.455                 | 00.12 | m              | 2.127    | 106   | m                  | 1.262         | 115               | w              |
| 1.433                 | 116   | w              | 1.831    | 00.10 | m                  | 1.206         | 107               | w              |
| 1.429                 | 200   | w              | 1.728    | 110   | m'                 | 1.145         | 116               | w              |
| 1.414                 | 202   | w              | 1.707    | 111   | m                  |               |                   |                |
| 1.391                 | 10.11 | w              | 1.657    | 113   | m                  | $2S-Sn_{1/2}$ | NDSe <sub>2</sub> |                |
| 1.319                 | 118   | w*             | 1.485    | 116   | w t                | 7.437         | 002               | 8              |
| 1.298                 | 10.12 | w              | 1.485    | 200   | w*                 | 2.998         | 100               | m              |
| 1.285                 | 206   | w              | 1.459    | 202   | w                  | 2.940         | 101               | s              |
| 1.247                 | 00.14 | w              | 1.364    | 10.12 | w                  | 2.780         | 102               | m <sup></sup>  |
| 1.202                 | 11.10 | w.             | 1.364    | 118   | w                  | 2.567         | 103               | m              |
| 1.189                 | 208   | w*             | 1.331    | 206   | w                  | 2.335         | 104               | s              |
| 1.107                 | 20.10 | w              | 1.304    | 00.14 | m                  | 2.118         | 105               | m <sup>+</sup> |
| 1.091                 | 11.12 | m              | 1.202    | 10.14 | w                  | 1.914         | 106               | m              |
| 1.081                 | 00.16 | w              |          |       |                    | 1.864         | 008               | \$             |
| 1.075                 | 212   |                | 2S-SnNbS | e2    |                    | (1.734        | 107               | -              |
| 1.075                 | 10.15 | w              | 4.529    | 004   | m                  | 1.734         | 110               | m*             |
| 1.064                 | 213   | w              | 3.013    | 006   | s                  | 1.688         | 112               | m <sup></sup>  |
| 1.015                 | 216   |                | 2.988    | 100   | m <sup>+</sup>     | 1.637         | 113               | w              |
| 1.015                 | 10.16 | w              | 2.950    | 101   | s                  | 1.585         | 108               | w              |
|                       |       |                | 2.849    | 102   | m                  | 1.496         | 00.10             | m              |
| 2S-SnNbS <sub>2</sub> |       |                | 2.683    | 103   | m                  | 1.495         | 115               |                |
| 8.672                 | 002   | w              | 2.309    | 105   | \$                 | 1.495         | 200               | w              |
| 4.332                 | 004   | s              | 2.262    | 008   | m*                 | 1.453         | 109               | m              |
| 2.889                 | 006   | m <sup>+</sup> | 2.122    | 106   | S                  | 1.441         | 203               | w              |
| 2.879                 | 100   | m              | 1.955    | 107   | m*                 | 1.395         | 204               | m              |
| 2.730                 | 102   | m <sup>+</sup> | 1.810    | 00.10 | w                  | (1.342        | 10.10             |                |
| 2.571                 | 103   | m              | 1.737    | 110   | S                  | 1.342         | 117               | w              |
| 2.214                 | 105   | w              | 1.695    | 112   | m                  | 1.342         | 205               |                |
| 2.168                 | 008   | s              | 1.588    | 114   | m                  | 1.271         | 118               | m <sup>+</sup> |
| 2.038                 | 106   | m <sup>+</sup> | 1.554    | 10.10 | w*                 | 1.132         | 11.10             | m              |
| 1.740                 | 00.10 | w              | 1.503    | 00.12 | <br>m <sup>+</sup> | 1.111         |                   |                |
| 1.734                 | 108   | w              | 1.498    | 116   | m <sup>+</sup>     | 38-Sn         | NbS2              |                |
| 1.659                 | 110   | m              | 1.455    | 10.11 | m*                 | 6.000         |                   |                |
| 1.551                 | 114   | w              | 1.395    | 118   | <br>m⁺             | 6.810         | 003               | S              |
| 1.485                 | 10.10 | w              | 1.344    | 10.12 | <br>m <sup>+</sup> | 3.401         | 006               | m              |
| 1.447                 | 00.12 | w <sup>+</sup> | 1.274    | 10.13 | m <sup>+</sup>     | 2.867         | 101               | 8              |
| 1.417                 | 202   | w              | 1.251    | 11.10 | w                  | 2.780         | 102               | m              |
| 1.393                 | 203   | w              | 1.152    | 20.10 | m                  | 2.515         | 104               | m              |
| 1.318                 | 118   | w              | 1.134    | 11.12 | <br>m              | 2.359         | 105               | S              |
| 1.292                 | 10.12 | w              | 1.117    | 10.15 | w                  | 2.051         | 107               | S              |

| TABLE II. | (continued) |
|-----------|-------------|
|-----------|-------------|

| d(obs)         | hki   | Intensity  | d(obs)   | hki   | Intensity      | d(obs) | hki   | Intensity      |
|----------------|-------|------------|----------|-------|----------------|--------|-------|----------------|
| 1.914          | 108   | w          | 1.996    | 204   |                | 3.357  | 004   |                |
| 1.701          | 00.12 | m          | 1.773    | 116   | w              | 2.862  | 110   | S              |
| 1.670          | 110   | S          | 1.670    | 008   | m              | 2.784  | 104   | m <sup>+</sup> |
| 1.623          | 113   | m          | 1.653    | 300   | w              | 2.248  | 006   | m              |
| 1.499          | 116   | w          | 1.607    | 108   | w <sup>+</sup> | 2.040  | 106   | m*             |
| 1.445          | 201   | m          | 1.603    | 302   | W              | 1.996  | 204   | m              |
| 1.394          | 204   | w          | 1.492    | 304   | m              | 1.773  | 116   | w              |
| 1.363          | 00.15 | m          | 1.449    | 118   |                | 1.670  | 008   | m              |
| 1.296          | 207   | w          | 1.432    | 220   | w              | 1.653  | 300   | w              |
|                |       |            | 1.363    | 00.10 | w              | 1.607  | 108   | w <sup>+</sup> |
| 2S-Sn1/3 TaS2  |       | 1.331      | 306      | w     | 1.603          | 302    | w     |                |
| 6 7 2 2        | -     |            | 1.293    | 10.10 | w              | 1.492  | 304   | m              |
| 0./32          | 1002  | S          | 1.113    | 00.12 | w              | 1.449  | 118   | m              |
| 4.9/9          | 100   | W          | 1.091    | 10.12 | w              | 1.432  | 220   | w              |
| 4.022          | 102   | <b>w</b> _ | 1.046    | 30.10 | m              | 1.363  | 00.10 | w              |
| 3.331<br>2.862 | 004   | m          |          |       |                | 1.331  | 306   | w              |
| 2.802          | 110   | \$<br>+    | 2S-Snu T | aSa   |                | 1.293  | 10.10 | w              |
| 2./84          | 104   | m          | 6 700    |       |                | 1.113  | 00.12 | w              |
| 2.248          | 000   | m<br>+     | 6.732    | 002   | S              | 1.091  | 10.12 | w              |
| 2.040          | 106   | m'         | 4.979    | 100   | w              | 1.046  | 30.10 | m              |
|                |       |            | 4.022    | 102   | W              |        |       |                |

For example tin intercalates have been synthesized [3-5] and extensively characterized by Mössbauer effect, nuclear magnetic resonance and photoelectron spectroscopy [6-9]. A recent structure determination of  $Sn_{1,0}$  TaS<sub>2</sub> by Eppinga and Weiger [10] has described a very unusual coordination for the tin: the matrix TaS<sub>2</sub> can be described as a /AbA AcA/ type with the tin atoms linearly coordinated to two sulfur atoms of the TaS<sub>2</sub> slabs (Fig. 1).

In this paper we describe the preparation, X-ray diffraction data, and Mössbauer characterization of six new, distinct tin intercalates.

## Experimental

The  $TaS_2$ ,  $TaSe_2$ ,  $NbS_2$  and  $NbSe_2$  matrices used as starting materials for the preparation of the intercalation compounds were prepared by literature methods [2, 11] to yield 2H-type (/AbA CbC/) structures as confirmed by X-ray powder diffraction patterns.

In general the preparation of the intercalated complex proceeded by sealing one to three grams of the  $MX_2$  matrix with the desired ratio of 99.8% pure tin granules in an evacuated Vycor tube. The mixture was raised 50 °C per hour until the appropriate temperature was reached and at the end of the heating period the sample was allowed to cool slowly to room temperature (Table I).

Intercalation products were purified by a previously described densitometric technique [5]. Densities were obtained by displacement of  $CCl_4$ 

in a liquid pycnometer and stoichiometries calculated as reported elsewhere [5, 11].

Powder diffraction patterns were obtained on a North American Philips powder diffractometer and a scintillation counter coupled to a Minneapolis Honeywell chart recorder using  $CuK_{\alpha}$  radiation with  $2\theta$  ranging from 5° to 90°.

The Mössbauer data were collected on a Hewlett Packard, 1024 channel, multi channel analyzer (Model HP - 5421 - A) and Ortec electronics (Models 451 and 406 A) with a Harshaw NaI scintillation detector and an Elscint Function Generator (Model MFG-2) in a constant accelerator mode. The source was a 5.5 millicurie BaSnO<sub>3</sub> (New England Nuclear, Model NER 077). The data were analyzed by a conventional least-squares fit to individual Lorentzian shaped absorption peaks on an IBM 360-168 computer. The maximum error calculated for the position of any one absorption peak was  $\pm 0.02$  mm/s.

### **Results and Conclusions**

Table II lists the observed X-ray patterns of several of the compounds along with the Miller indices (hkl) and visually estimated intensities. All compounds reported can be indexed on a hexagonal unit cell with all of the observed peaks indexable. This indicates that the samples are of high purity and that any conclusions drawn from the Mössbauer characterization in this case are indicative of valid structural and bonding parameters.

|                                       | Isomer Shift <sup>b</sup> | Δ (mm/s) | Eff. 5S<br>Elec. Den. | Eff. Sn<br>Oxid State |
|---------------------------------------|---------------------------|----------|-----------------------|-----------------------|
| Group I                               |                           |          |                       |                       |
| 2S-SnTaS2 <sup>c</sup>                | 1.14                      | 1.24     | 1.20                  | +0.40                 |
| 2S-SnNbS <sub>2</sub>                 | 1.12                      | 0.96     | 1.20                  | +0.40                 |
| 2S-SnNbSe <sub>2</sub>                | 0.86                      | 1.15     | 1.15                  | +0.31                 |
| Group II                              |                           |          |                       |                       |
| 1S-SnNbSe <sub>2</sub>                | 1.79                      | 0.0      | 1.32                  | +0.64                 |
| 2S-Sn1/2NbSe2                         | 1.76                      | 0.0      | 1.31                  | +0.63                 |
| 3S-Sn <sub>1/3</sub> NbS <sub>2</sub> | 1.78                      | 0.0      | 1.32                  | +0.64                 |
| Group III                             |                           |          |                       |                       |
| 2S-Sn 1/2 TaS2°                       | 1.94                      | 0.0      | 1.35                  | +0.69                 |
| 2S-Sn <sub>1/6</sub> TaS <sub>2</sub> | 2.08                      | 0.0      | 1.37                  | +0.74                 |

TABLE III. Mössbauer Spectral Data for Tin Intercalates.<sup>8</sup>

<sup>a</sup>Mössbauer data was unavailable for 2S-SnTaSe<sub>2</sub>. <sup>b</sup>Peak positions are referred to  $\alpha$ -tin (all values are ±0.02 mm/s). <sup>c</sup>Data also obtained by Herber and Davis [8].

An examination of the Mössbauer data given in Table III shows that the compounds may be divided into three distinct groups.

Group I is characterized by the presence of a Mössbauer doublet with an effective tin oxidation state of approximately 0.4. This group of intercalates contain all of the 2S compounds which are completely filled in all the van der Waals layers and have an approximate increase in the c axis of 5.5 Å. Eppinga and Weiger [10] have recently shown that SnNbS<sub>2</sub> and SnTaS<sub>2</sub> are isostructural and contain linearly coordinated tin. SnNbSe<sub>2</sub> shows a Mössbauer doublet similar to these two compounds and can be placed in the same group. It could very well be that the Mössbauer doublet in tin intercalation complexes may be indicative of linearly coordinated tin.

Group II intercalates have Mössbauer singlets indicating cubic symmetry for the tin sites with an effective tin oxidation state of approximately 0.6. These complexes have a regular c axis and a Sn/Nb mol ratio which varies in a reciprocal relationship to the slab number (e.g. 1/3 for 3S; 1/2 for 2S; 1/1 for 1S). It is therefore not surprising that in this redox reaction the effective oxidation state of the tin remains constant because it is acting as the limiting reagent.

Group III contains those intercalates which form superlattice structures and have a Mössbauer singlet and an effective tin oxidation state of approximately 0.7. Judging from this data it would appear that the superlattice complexes have the tin in a single, identical symmetry site.

One can summarize the results of the Mössbauer data as follows:

(1) In each compound studied, there is but a single tin site present.

(2) All the tin is present in the +2 formal oxidation state.

(3) The effective oxidation state of the intercalated tin remains fairly constant within the group, but increases in the higher groups (I < II < III).

(4) Quadrupole splitting of the spectrum occurs only in Group I, 2S-regular lattice compounds, and may well be diagnostic of linear coordination of tin in this class.

Judging from the Mössbauer data it seems reasonable to suppose that elucidating the structure of one of the compounds in the group should be extremely pertinent and useful in obtaining the structure for the other compounds. Uncompleted structural refinement on  $2S-SnNbSe_2$  seems to support a structure in which the tin is in a single site tetrahedrally surrounded by selenium. If refinement supports this initial conclusion, other compounds of group II should also contain tetrahedrally coordinated tin.

#### Acknowledgements

This work was supported in part by a grant from the City University of New York Faculty Research Award Program. The authors would like to thank I. A. Cohen for use of the Mössbauer equipment at Brooklyn College.

#### References

- 1 J. A. Wilson and A. D. Yoffee, Adv. Phys., 18, 193 (1969).
- 2 F. R. Gamble, J. H. Osiecki and F. J. DiSalvo, J. Chem. Phys., 55, 3525 (1971) and references therein.
- 3 F. J. DiSalvo, G. W. Hull, L. W. Schwarty, J. M. Voorhoeve and J. V. Waszczak, J. Chem. Phys., 59, 1922 (1973) and references therein.

- 4 R. T. Kennedy, Ph.D. Dissertation, Fordham University, Bronx, New York (1977).
- T. Tracey, Ph.D. Dissertation, Fordham University, Bronx, New York (1974).
  A. C. Gossard, F. J. DiSalvo and H. Yasuoka, Phys. Rev.,
- B9, 3965 (1974).
- R. Eppinga, G. A. Sawatzky, C. Haas, and C. F. van Brug-gen, J. Phys. C9, 3371 (1975).
- 8 R. H. Herber and R. F. Davis, J. Chem. Phys., 63, 3668 (1975).
  - 9 R. H. Herber and R. F. Davis, J. Chem. Phys., 65, 3773 (1976).
- 10 R. Eppinga and G. A. Weiger, Mat. Res. Bull., 12, 1057 (1977).
- 11 F. R. Gamble, F. J. DiSalvo, R. A. Klemm, and T. H. Geballe, Science, 168, 568 (1970).